An Input-Output/System Dynamics approach to ecological-economic modeling:

Interrelations between natural capital stock and economic growth

Mateo Cordier^{a, b}, <u>Takuro Uehara</u>^c, Bertrand Hamaide^d and Jeffrey Weih^e

^a Centre Européen Arctique, Université de Versailles Saint-Quentin-en-Yvelines (CEARC-UVSQ), France.
^b Centre d'Études Economiques et Sociales de l'Environnement, Centre Emile Bernheim, Université Libre de Bruxelles, (CEES-CEE-UB), Bruxsels, Belgium.

^c College of Policy Science, Ritsumeikan University, Kyoto, Japan

^d Centre de Recherche en Economie, Université Saint-Louis (CEREC-FUSL), Brussels, Belgium.

^e Senior Adult Learning Center, Portland State University, USA.

Objectives

- Build a model by linking an Input-output (I-O) table to a System Dynamics (SD) model in order to capture the complexity of an ecological-economic system
- Apply the model to the Seine Estuary, France
- For this paper, **policy implications** for the restoration of the estuary are **NOT** the main focus
 - (we will address these in the next step)

2

Motivation

- We need **modeling techniques** which can **capture the complexity** of an ecological-economic system.
- Environmentally Extended I-O
 - Captures detailed economic structures, but not dynamics
 - Constant technical coefficients; Lack of feedback loops
- SD(a computer-aided approach to solving a system of nonlinear first-order differential equations)
 - Captures nonlinear dynamics and feedback loops, but not detailed (disaggregated) economic structures
- It is technically possible to integrate I-O and SD.
 - SD can be synchronized with SAP, Oracle, Microsoft Excel, GIS, etc.

Study Area: The Seine Estuary

 The nursery area for sole has been decreasing due to economic activities (Rochette et al, 2010; Culliviez et al, 2008).

Nursery habitats have been continually destroyed since 1834 by the construction of dykes and harbour extensions for maritime transport, and by the Normandy bridge. Source: Cullivies (2008).

Source: Rochette. S.

Seine estuary

The Schematic Model

• SD on Powersim[®] is synchronized with I-O on Excel[®].

Simulation Results

- Preliminary results with three scenarios.
- Need to use optimization techniques to elicit practical policy implications.

5

7

Future Research Directions

Feedback loops

- E.g., impacts of economic activities on the destruction of the nursery
- Delays
 - E.g., dike construction impacts linger for several years (Culliviez, 2009)
- Ecological System
 - Need to sophisticate the model structure of the ecological system
- Data Collection
 - Collect "soft data" through, for example, expert meetings
- Optimal Restoration Policies under Uncertainties
 - SD offers optimization techniques for analytically unsolvable models